Class 10 chapter Trigonometry Question Bank

Class 10 chapter Trigonometry Question Bank

1. Q):- if sin A = \frac{8}{17} , find other trigonometric ratios of \angle A .

2. Q):- if cos A = \frac{9}{41} , find other trigonometric ratios of \angle A .

3. Q):- if tan A = \sqrt{3} , find other trigonometric ratios of \angle A .

4. Q):- if sin \theta = \frac{25}{7} , find other trigonometric ratios of \theta .

5. Q):- if cos \theta = \frac{3}{5} , find the value of ( \frac{5 cosec  \theta  –  4 tan  \theta}{sec  \theta  +  cot  \theta} ) .

6. Q):-  if sec \theta  =  \frac{5}{4} , show that \frac{(2 cos  \theta  –  sin  \theta)}{(cot  \theta  –  tan  \theta)}  =  \frac{12}{7} . 

7. Q):- if \triangle ABC it is given that \angle B  =  {90}^\circ   and AB : AC = 1 : \sqrt{2} . find the value of ( \frac{2 tan  A}{1  +  tan^2  A} ) .

8. Q):- if 3 tan \theta = 4 , evaluate \frac{3 sin  \theta  +  2 cos  \theta }{3 sin  \theta  –  2 cos  \theta} .

9. Q):- if 5cot \theta = 3 , find the value of ( \frac{5 sin  \theta  –  3 cos  \theta}{4 sin  \theta  +  3 cos  \theta} ) . 

10. Q):- if 7 sin^2 \theta  +  3 cos^2 \theta   =  4 , show that  tan \theta  =  \frac{1}{\sqrt{3}} .

11. Q):- if cot \theta  =  \frac{15}{8} , then evaluate \frac{(2  +  2 sin  \theta)(1  –  sin  \theta)}{(1  +  cos  \theta)(2  –  2 cos  \theta)}  

12. Q):- in \triangle ABC right – angled at B , AB = 5 cm and BC = 12 BC . find the values of  sin A  , sin C , sec A and sec C.

13. Q):- in a \triangle  ABC  , \angle B  =  90^{\circ}   , AB = 5 cm and (BC + AC) = 25 cm . find the value of sin A , cos A , cosec C and sec C .

14. Q):- in a \triangle  ABC  , \angle B  =  90^{\circ} , AB = 7 cm and (AC – BC) = 1 cm . find the value of sin A , cos A , sin C , and cos C.

15. Q):- in a \triangle  ABC  , \angle C  =  90^{\circ} and tan A = \frac{1}{\sqrt{3}} . find the value of 

       (i) sin A . cos B + cos A . sin B   (ii) cos A . cos B – sin A . sin B

16.Q :-  If \angle A  and  \angle B       are  acute  angle   such  that  cos A  =  cos B     then  prove  that     \angle A  =   \angle B.   

17. Q :-  If sin \theta  =  \dfrac{\sqrt{3}}{2}, find the value of all T – ratio of  \theta . 

18. Q :- If cos \theta =  \dfrac{\sqrt{7}}{25}, find the values of all T-ratios of \theta .

19. Q :- If tan \theta  =  \dfrac{15}{8}, find the values of all T-ratios of \theta . 

20. Q :- If cot \theta = 2, find the values of all T-ratios of \theta .

21. Q :- If cosec \theta = \sqrt{10} , find the value of all T-ratio of \theta  

22. Q :- If sin \theta  =  \dfrac{a^2  –  b^2}{a^2 + b^2}, find the value of all T-ratios of \theta

23. Q :- If 15 cot A = 8 , find the values of sin A and sec A. 

24. Q :- If sin A = \dfrac{9}{41} , find the value of cos A and then tan A . 

25. Q :- If cos \theta  = 0.6 , show that (5 sin \theta – 3 tan \theta ).

26. Q :- If cosec \theta = 2, show that cot \theta +  (\dfrac{sin \theta}{1+cos \theta} ) = 2.

27. Q :- If tan \theta = \dfrac{1}{\sqrt7} , show that \dfrac{cosec^2 \theta  –  sec^2}{cosec^2 \theta  + sec^2 \theta} = \dfrac{3}{4}

28. Q :- If tan \theta = \dfrac{20}{21} , show that \dfrac{1 – sin\theta + cos\theta}{1 + sin\theta + cos\theta} = \dfrac{12}{7}.  

29. Q :- If cot \theta  =  \dfrac{3}{4}, show that \sqrt\dfrac{sec \theta  –  cosec \theta}{sec \theta + cosec \theta} = \dfrac{1}{\sqrt7} . 

30. Q :- If sin \theta  =  \dfrac{3}{4} , show that \sqrt\dfrac{cosec^2 \theta  –  cot^2 \theta}{sec^2 \theta  –  1} = \dfrac{\sqrt7}{3}.  

31. Q :- If sin \theta = \dfrac{a}{b}, show that (sec \theta  +  tan\theta ) = \sqrt\dfrac{b + a}{b – a}.  

32. Q :- If cos \theta  =  \dfrac{3}{5} , show that \dfrac{sin \theta  –  cot \theta}{2tan\theta} = \dfrac{3}{160}.  

33. Q :- If tan \theta  =  \dfrac{4}{3} , show that (sin\theta  + cos \theta) =  \dfrac{7}{5} . 

34. Q :- If tan \theta = \dfrac{a}{b}, show that (\dfrac{a sin\theta – b cos \theta}{ a sin\theta + b cos \theta})  = (\dfrac{a^2  –  b^2}{a^2  +  b^2}) .

35. Q :- If 3 tan \theta = 4 , show that (\dfrac{4 cos \theta  –  sin \theta}{2 cos \theta + sin \theta }) = \dfrac{4}{5}.  

36. Q :- If 3cot \theta = 2 show that   (\dfrac{4sin \theta – 3cos \theta}{2sin \theta  +  6cos \theta })  = \dfrac{1}{3} .  

37. Q :- If 3 cot \theta  = 4 , show that  \dfrac{3 – 4tan^2 \theta}{4tan^2 \theta – 3 } = (cos^2 \theta –  sin^2 \theta ) .

38. Q :- If sec \theta  =  \dfrac{17}{8},   verify that ( \dfrac{3 – 4 sin^2 \theta}{4cos^2\theta – 3 } =  (\dfrac{3 – tan^2 \theta}{1 – 3tan^2 \theta }) . 

39. Q :- In a \Delta ABC, \angle B  = 90 \degree AB = 24 cm and BC = 7 cm. 

Find (i) sin A    (ii) cos A   (iii) sin C    (iv)   cos C.  

40. Q :- In a \Delta ABC,  \angle C  = 90 \degree , \angle ABC = \theta , , BC = 21 units and AB  =  29 units. 

show that (cos^2 \theta  –  sin^2 \theta )  =  \dfrac{41}{841}.

for other chapter question bank visit here 

and for video lecture on trigonometry visit here.

Scroll to Top