Class 10 chapter Trigonometry Question Bank

Class 10 chapter Trigonometry Question Bank

1. Q):- if sin A = 817 \frac{8}{17} , find other trigonometric ratios of A \angle A .

2. Q):- if cos A = 941 \frac{9}{41} , find other trigonometric ratios of A \angle A .

3. Q):- if tan A = 3 \sqrt{3} , find other trigonometric ratios of A \angle A .

4. Q):- if sin θ \theta = 257 \frac{25}{7} , find other trigonometric ratios of θ \theta .

5. Q):- if cos θ \theta = 35 \frac{3}{5} , find the value of (5cosec θ – 4tan θsec θ + cot θ \frac{5 cosec  \theta  –  4 tan  \theta}{sec  \theta  +  cot  \theta} ) .

6. Q):-  if sec θ = 54 \theta  =  \frac{5}{4} , show that (2cos θ – sin θ)(cot θ – tan θ) = 127 \frac{(2 cos  \theta  –  sin  \theta)}{(cot  \theta  –  tan  \theta)}  =  \frac{12}{7}

7. Q):- if \triangle ABC it is given that B = 90 \angle B  =  {90}^\circ   and AB : AC = 1 : 2 \sqrt{2} . find the value of (2tan A1 + tan2 A \frac{2 tan  A}{1  +  tan^2  A} ) .

8. Q):- if 3 tan θ \theta = 4 , evaluate 3sin θ + 2cos θ3sin θ – 2cos θ \frac{3 sin  \theta  +  2 cos  \theta }{3 sin  \theta  –  2 cos  \theta} .

9. Q):- if 5cot θ \theta = 3 , find the value of (5sin θ – 3cos θ4sin θ + 3cos θ \frac{5 sin  \theta  –  3 cos  \theta}{4 sin  \theta  +  3 cos  \theta} ) . 

10. Q):- if 7sin2θ + 3cos2θ 7 sin^2 \theta  +  3 cos^2 \theta   =  4 , show that  tan θ = 13 \theta  =  \frac{1}{\sqrt{3}} .

11. Q):- if cot θ = 158 \theta  =  \frac{15}{8} , then evaluate (2 + 2sin θ)(1 – sin θ)(1 + cos θ)(2 – 2cos θ) \frac{(2  +  2 sin  \theta)(1  –  sin  \theta)}{(1  +  cos  \theta)(2  –  2 cos  \theta)}  

12. Q):- in \triangle ABC right – angled at B , AB = 5 cm and BC = 12 BC . find the values of  sin A  , sin C , sec A and sec C.

13. Q):- in a  ABC ,B = 90 \triangle  ABC  , \angle B  =  90^{\circ}   , AB = 5 cm and (BC + AC) = 25 cm . find the value of sin A , cos A , cosec C and sec C .

14. Q):- in a  ABC ,B = 90 \triangle  ABC  , \angle B  =  90^{\circ} , AB = 7 cm and (AC – BC) = 1 cm . find the value of sin A , cos A , sin C , and cos C.

15. Q):- in a  ABC ,C = 90 \triangle  ABC  , \angle C  =  90^{\circ} and tan A = 13 \frac{1}{\sqrt{3}} . find the value of 

       (i) sin A . cos B + cos A . sin B   (ii) cos A . cos B – sin A . sin B

16.Q :-  If A and B   \angle A  and  \angle B       are  acute  angle   such  that  cos A  =  cos B     then  prove  that    A =  B.     \angle A  =   \angle B.   

17. Q :-  If sin θ = 32, \theta  =  \dfrac{\sqrt{3}}{2}, find the value of all T – ratio of  θ \theta

18. Q :- If cos θ= 725, \theta =  \dfrac{\sqrt{7}}{25}, find the values of all T-ratios of θ \theta .

19. Q :- If tan θ = 158, \theta  =  \dfrac{15}{8}, find the values of all T-ratios of θ \theta

20. Q :- If cot θ \theta = 2, find the values of all T-ratios of θ \theta .

21. Q :- If cosec θ=10 \theta = \sqrt{10} , find the value of all T-ratio of θ \theta  

22. Q :- If sin θ = a2 – b2a2+b2, \theta  =  \dfrac{a^2  –  b^2}{a^2 + b^2}, find the value of all T-ratios of θ \theta

23. Q :- If 15 cot A = 8 , find the values of sin A and sec A. 

24. Q :- If sin A = 941 \dfrac{9}{41} , find the value of cos A and then tan A . 

25. Q :- If cos θ =0.6 \theta  = 0.6 , show that (5 sin θ \theta – 3 tan θ \theta ).

26. Q :- If cosec θ \theta = 2, show that cotθ+ (sinθ1+cosθ cot \theta +  (\dfrac{sin \theta}{1+cos \theta} ) = 2.

27. Q :- If tan θ=17 \theta = \dfrac{1}{\sqrt7} , show that cosec2θ – sec2cosec2θ +sec2θ=34 \dfrac{cosec^2 \theta  –  sec^2}{cosec^2 \theta  + sec^2 \theta} = \dfrac{3}{4}

28. Q :- If tan θ=2021 \theta = \dfrac{20}{21} , show that 1sinθ+cosθ1+sinθ+cosθ=127. \dfrac{1 – sin\theta + cos\theta}{1 + sin\theta + cos\theta} = \dfrac{12}{7}.  

29. Q :- If cotθ = 34, \theta  =  \dfrac{3}{4}, show that secθ – cosecθsecθ+cosecθ=17 \sqrt\dfrac{sec \theta  –  cosec \theta}{sec \theta + cosec \theta} = \dfrac{1}{\sqrt7}

30. Q :- If sin θ = 34 \theta  =  \dfrac{3}{4} , show that cosec2θ – cot2θsec2θ – 1=73. \sqrt\dfrac{cosec^2 \theta  –  cot^2 \theta}{sec^2 \theta  –  1} = \dfrac{\sqrt7}{3}.  

31. Q :- If sinθ=ab, \theta = \dfrac{a}{b}, show that (secθ + tanθ)=b+aba. \theta  +  tan\theta ) = \sqrt\dfrac{b + a}{b – a}.  

32. Q :- If cos θ = 35 \theta  =  \dfrac{3}{5} , show that sinθ – cotθ2tanθ=3160. \dfrac{sin \theta  –  cot \theta}{2tan\theta} = \dfrac{3}{160}.  

33. Q :- If tan θ = 43, \theta  =  \dfrac{4}{3} , show that (sinθ +cosθ)= 75 (sin\theta  + cos \theta) =  \dfrac{7}{5}

34. Q :- If tan θ=ab, \theta = \dfrac{a}{b}, show that (asinθbcosθasinθ+bcosθ) =(a2 – b2a2 + b2) (\dfrac{a sin\theta – b cos \theta}{ a sin\theta + b cos \theta})  = (\dfrac{a^2  –  b^2}{a^2  +  b^2}) .

35. Q :- If 3 tanθ \theta = 4 , show that (4cosθ – sinθ2cosθ+sinθ)=45. (\dfrac{4 cos \theta  –  sin \theta}{2 cos \theta + sin \theta }) = \dfrac{4}{5}.  

36. Q :- If 3cot θ \theta = 2 show that  (4sinθ3cosθ2sinθ + 6cosθ) =13  (\dfrac{4sin \theta – 3cos \theta}{2sin \theta  +  6cos \theta })  = \dfrac{1}{3} .  

37. Q :- If 3 cot θ =4 \theta  = 4 , show that  34tan2θ4tan2θ3=(cos2θ– sin2θ) \dfrac{3 – 4tan^2 \theta}{4tan^2 \theta – 3 } = (cos^2 \theta –  sin^2 \theta ) .

38. Q :- If sec θ = 178, \theta  =  \dfrac{17}{8},   verify that (34sin2θ4cos2θ3= (3tan2θ13tan2θ) \dfrac{3 – 4 sin^2 \theta}{4cos^2\theta – 3 } =  (\dfrac{3 – tan^2 \theta}{1 – 3tan^2 \theta })

39. Q :- In a ΔABC,B =90° \Delta ABC, \angle B  = 90 \degree AB = 24 cm and BC = 7 cm. 

Find (i) sin A    (ii) cos A   (iii) sin C    (iv)   cos C.  

40. Q :- In a ΔABC, C =90°,ABC=θ, \Delta ABC,  \angle C  = 90 \degree , \angle ABC = \theta , , BC = 21 units and AB  =  29 units. 

show that (cos2θ – sin2θ) = 41841. (cos^2 \theta  –  sin^2 \theta )  =  \dfrac{41}{841}.

for other chapter question bank visit here 

and for video lecture on trigonometry visit here.